Mapping tropical forest structure in southeastern Madagascar using remote sensing and artificial neural networks

نویسندگان

  • J. Carter Ingram
  • Terence P. Dawson
  • Robert J. Whittaker
چکیده

Tropical forest condition has important implications for biodiversity, climate change and human needs. Structural features of forests can serve as useful indicators of forest condition and have the potential to be assessed with remotely sensed imagery, which can provide quantitative information on forest ecosystems at high temporal and spatial resolutions. Herein, we investigate the utility of remote sensing for assessing, predicting and mapping two important forest structural features, stem density and basal area, in tropical, littoral forests in southeastern Madagascar. We analysed the relationships of basal area and stem density measurements to the Normalised Difference Vegetation Index (NDVI) and radiance measurements in bands 3, 4, 5 and 7 from the Landsat Enhanced Thematic Mapper Plus (ETM+). Strong relationships were identified among all of the individual bands and field based measurements of basal area ( pb0.01) while there were weak and insignificant relationships among spectral response and stem density measurements. NDVI was not significantly correlated with basal area but was strongly and significantly correlated with stem density (r= 0.69, pb0.01) when using a subset of the data, which represented extreme values. We used an artificial neural network (ANN) to predict basal area from radiance values in bands 3, 4, 5 and 7 and to produce a predictive map of basal area for the entire forest landscape. The ANNs produced strong and significant relationships between predicted and actual measures of basal area using a jackknife method (r=0.79, pb0.01) and when using a larger data set (r=0.82, pb0.01). The map of predicted basal area produced by the ANN was assessed in relation to a pre-existing map of forest condition derived from a semiquantitative field assessment. The predictive map of basal area provided finer detail on stand structural heterogeneity, captured known climatic influences on forest structure and displayed trends of basal area associated with degree of human accessibility. These findings demonstrate the utility of ANNs for integrating satellite data from the Landsat ETM+ spectral bands 3, 4, 5 and 7 with limited field survey data to assess patterns in basal area at the landscape scale. D 2004 Elsevier Inc. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integration of remote sensing and meteorological data to predict flooding time using deep learning algorithm

Accurate flood forecasting is a vital need to reduce its risks. Due to the complicated structure of flood and river flow, it is somehow difficult to solve this problem. Artificial neural networks, such as frequent neural networks, offer good performance in time series data. In recent years, the use of Long Short Term Memory networks hase attracted much attention due to the faults of frequent ne...

متن کامل

The application of artificial neural network and multiple linear regression in modeling the volume of residual stand using environmental data and remote sensing

In order to manage the forests and optimal and sustainable utilization of the forest, it seems necessary to know the information on the volume of the residual stand. In this study, a systematic randomized inventory was carried out in 186 circular 10-acre plots in the educational and research forest of Darabkola, Sari, Golestan, Iran and the volume of each plot was obtained. In the next step, th...

متن کامل

Investigation of the Forest and Pasture Cover Changes in Arasbaran Ecosystem during 34 years, Using Remote Sensing Technique

Estimating the extent of changes in forest and rangelands land cover, leads to a clear understanding of the growth or decline of these natural areas and planning for effective protection of these national assets. The aim of current study was to reveal the trend of land-use changes in the Dizmar protected area of Arasbaran vegetative area, using MSS sensor of Landsat-5 for 1984, ETM+ sensor of L...

متن کامل

Monitoring of Regional Low-Flow Frequency Using Artificial Neural Networks

Ecosystem of arid and semiarid regions of the world, much of the country lies in the sensitive and fragile environment Canvases are that factors in the extinction and destruction are easily destroyed in this paper, artificial neural networks (ANNs) are introduced to obtain improved regional low-flow estimates at ungauged sites. A multilayer perceptron (MLP) network is used to identify the funct...

متن کامل

Risks assessment of forest project implementation in spatial density changes of forest under canopy vegetation using artificial neural network modeling approach

Risks assessment of forest project implementation in spatial density changes of forest under canopy vegetation using artificial neural network modeling approach   Nowadays, environmental risk assessment has been defined as one of the effective in environmental planning and policy making. Considering the position and structure of vegetation on the forest floor, the main role of forest under ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005